全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐官网赢钱公式冯耕| 百家乐官网网站| bet365地址| 百家乐官网007| 威尼斯人娱乐城现金开户| 百家乐官网游戏必赢法| 百家乐高手技巧| 上杭县| 誉博百家乐327589| 百家乐官网视频游戏客服| 百家乐网络游戏信誉怎么样| 百家乐官网最新投注方法| 老虎百家乐的玩法技巧和规则 | 百家乐官网作弊视频| 太阳城百家乐分析解码| 百家乐官网图表分析| 新加坡百家乐的玩法技巧和规则| 打百家乐官网的介绍| 百家乐官网保单机作弊| 535棋牌游戏| 366百家乐赌博| 搓牌百家乐官网技巧| 在线百家乐作| 迷你百家乐官网的玩法技巧和规则 | 德州扑克 玩法| 百家乐官网赚水方法| 利记| KTV百家乐的玩法技巧和规则| 澳门百家乐官网怎么赢钱| 香港六合彩结果| 百家乐玩法介绍图片| 百家乐官网软件辅助器| 星期八娱乐| 大发888ber娱乐场下载| 百家乐庄闲机率分析| 百家乐官网怎么才赢| 大发888娱乐城pt| 百家乐游戏下载| 仕達屋百家乐官网的玩法技巧和规则 | 百家乐官网梅花图标| bet365网址b365etbyty|