全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

西丰县| 百家乐积分| 庄河市| 微信百家乐官网群资源| 百家乐官网哪家有优惠| 凯旋门娱乐场| 百家乐官网科学| 澳门百家乐怎赌才能赚钱| 大发888娱乐场下载zhidu| 博盈娱乐| 百家乐官网园蒙| 大发888如何注册送58| 2024年九宫八卦吉位| E世博网址| 真人百家乐送钱| 百家乐官网电子路单下载| 百家乐接线玩法| 百家乐官网平台哪个比较安全| 百家乐视频游戏中心| 去澳门赌博| 皇室百家乐的玩法技巧和规则| 永凡棋牌官网下载| 线上百家乐官网平玩法| 法老王娱乐城| 澳门百家乐规则| 真人百家乐官网源代码| 大发888大发娱乐场| 百家乐官网正反投注| 大发888站群| 百家乐官网缩水软件| 白凤凰博彩通| 百家乐作弊内幕| 耒阳市| 百家乐赌场现金网平台排名| 闵行区| 澳门百家乐路单| 百家乐官网技论坛| 百家乐官网实战案例| 淮阳县| 百家乐博娱乐平台赌百家乐| 百家乐官网赌马|