全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

威尼斯人娱乐城活动lm0| bet365百科| 百家乐的最佳玩| 保单百家乐官网游戏机| 百家乐庄家抽水的秘密| 澳门百家乐官网赌客| 大发888娱乐亚洲| 百家乐如何必胜| 百家乐官网如何视频| 喜来登百家乐的玩法技巧和规则| 游戏机百家乐官网的技巧| 海南博彩业| 喜来登百家乐的玩法技巧和规则| 百家乐官网在线娱乐可信吗| 托里县| 百家乐家| 百家乐里面的奥妙| 百家乐官网赌场视屏| 百家乐官网网上技巧| 大发888 登陆不上| 百家乐隔一数打法| 利都百家乐官网国际娱乐平台 | 网上赌百家乐的玩法技巧和规则| 太阳城百家乐官网看牌| 卡宾娱乐| 德州扑克 规则| 麻将二八杠技巧| 如何赢百家乐的玩法技巧和规则 | 大发888博彩官方下载| 真人百家乐体验金| 真人百家乐开户须知| 什么是百家乐官网的大路| 优博家百家乐官网娱乐城| 永仁县| 188金宝博开户| 金博士娱乐城优惠| 百家乐合作| 蓝盾百家乐娱乐场开户注册| 百家乐h游戏怎么玩| 唐朝百家乐官网的玩法技巧和规则| 大丰收百家乐官网的玩法技巧和规则 |