全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

大发888 m摩卡游戏| 百家乐玩法的秘诀| 圣淘沙百家乐娱乐城| 百家乐官网技巧方法| 百家乐官网娱乐城地址| 莱阳市| 利来国际注册| 大发888好吗| 德州扑克吧| 六合彩开奖结果查询| 88娱乐城址| 皇冠国际现金网| 太阳城娱乐城| 百家乐官网视频连线| 梁河县| 百家乐官网高额投注| 百家乐官网娱乐网网77scs| 属虎和属猴牛人做生意| 延长县| e世博百家乐官网娱乐场| 百家乐官网全自动分析软件| 百家乐官网游戏接口| 立即博百家乐官网娱乐城| 聚宝盆百家乐官网的玩法技巧和规则 | 新2百家乐现金网百家乐现金网| 赌百家乐容易的原| 百家乐真人秀| 帝王百家乐官网的玩法技巧和规则 | 基础百家乐的玩法技巧和规则 | 百家乐五湖四海娱乐场开户注册| 全讯网xb112| 皇冠开户网| 赌百家乐官网赢的奥妙| 百家乐官网可以作假吗| 百家乐斗地主在哪玩| 威尼斯人娱乐场官网| 澳盈88开户,| 澳门百家乐官网十大缆| 百家乐娱乐城主页| 大发888官网官方下载| 老虎机 |