全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

【百家大講堂】第240期:空天地一體化車聯網資源管理中的增強學習

發布日期:2019-09-18

講座題目:空天地一體化車聯網資源管理中的增強學習

Reinforcement Learning for Resource Management in Space-Air-Ground (SAG) Integrated Vehicular Networks

報 告 人:沈學民(教授、加拿大工程院院士)

時   間:2019年9月28日(周六)14:30-16:00

地   點:中關村校區信息科學實驗樓205會議室

主辦單位:研究生院、信息與電子學院

報名方式:登錄北京理工大學微信企業號---第二課堂---課程報名中選擇“【百家大講堂】第240期:空天地一體化車聯網資源管理中的增強學習”

【主講人簡介】

  沈學民是加拿大滑鐵盧大學電氣與計算機工程系教授,兼任研究生教學委員會委員。沈博士的研究重點是無線資源管理、無線網絡安全、智能電網、車聯網和傳感器網絡。他是 IEEE IoT J 的總主編。他擔任 Mobihoc'15 的總主席,IEEE Globecom 16、IEEE INFOCOM'14、IEEE VTC'10、IEEE ICC'10 、IEEE Globecom'07 的技術委員會主席、IEEE 通信協會無線通信技術委員會主席。沈博士是當選的IEEE 通信協會出版分會的副主席,IEEE通信協會杰出講師評選委員會委員,以及IEEE通信協會會士評審委員會委員。沈博士于2006年獲得優秀研究生監督獎,2003年獲得加拿大安大略省總理研究卓越獎(PREA)。沈博士是加拿大安大略省注冊專業工程師、IEEE會士、加拿大工程學會院士、加拿大工程院院士、加拿大皇家學會院士和 IEEE 車輛技術協會和通信協會的杰出講師。

 

Xuemin (Sherman) Shen is a University Professor, and Associate Chair for Graduate Study, Department of Electrical and Computer Engineering, University of Waterloo, Canada. Dr. Shen's research focuses on wireless resource management, wireless network security, smart grid and vehicular ad hoc and sensor networks. He is the Editor-in-Chief of IEEE IoT J. He serves as the General Chair for Mobihoc'15, the Technical Program Committee Chair for IEEE Globecom'16, IEEE Infocom'14, IEEE VTC'10, the Symposia Chair for IEEE ICC'10, the Technical Program Committee Chair for IEEE Globecom'07, the Chair for IEEE Communications Society Technical Committee on Wireless Communications. Dr. Shen is an elected IEEE ComSoc Vice President - Publications, the chair of IEEE ComSoc Distinguish Lecturer selection committee, and a member of IEEE ComSoc Fellow evaluation committee. Dr. Shen received the Excellent Graduate Supervision Award in 2006, and the Premier's Research Excellence Award (PREA) in 2003 from the Province of Ontario, Canada. Dr. Shen is a registered Professional Engineer of Ontario, Canada, an IEEE Fellow, an Engineering Institute of Canada Fellow, a Canadian Academy of Engineering Fellow, a Royal Society of Canada Fellow, and a Distinguished Lecturer of IEEE Vehicular Technology Society and Communications Society.

 

【講座信息】

  空-天-地一體化車聯網是一種非常多樣化的車聯網,其可在任何地方、任何環境條件、和任何時間突發的事件下同時保證超可靠性的低延遲通信并提供高帶寬流量。另一方面,要同時有效地管理和分配地面網絡、空中網絡和空間(衛星)資源面臨巨大挑戰,因為它們在延遲、吞吐量和覆蓋范圍方面具有異構訪問特性。此外,車輛的高機動性和實時決策要求進一步使問題難以解決。在本次報告中,我們提出在空-天-地一體化車聯網中使用強化學習進行資源管理,從而實現自適應訪問控制、按需無人機部署和無人機軌跡設計的無模型、快速決策。我們還將展示我們的空天地模擬器和一些演示結果。

 

Space-Air-Ground integrated Vehicular Network (SAGVN) is a prominent paradigm to provide an extremely versatile vehicular network that can simultaneously guarantee ultra-reliability low-latency communications (URLLC) and deliver high-bandwidth traffic anywhere, any environment condition, and any event at anytime. However, it is challenging to manage and allocate the terrestrial network, aerial network (UAV), and space (satellite) resources simultaneously and efficiently, as they have heterogeneous access features in terms of delay, throughput, and coverage range. In addition, high vehicle mobility and real-time decision requirement further render the problem intractable. In this talk, we advocate the usage of reinforcement learning for resource management in SAGVN, which can enable model-free and fast decision makings for adaptive access control, on-demand UAV deployment, and UAV trajectory design. We will also show the detail development of our SAG simulator and some demos.


网络百家乐官网| 澳门百家乐路单| 百家乐官网新注册送彩金| 博彩技巧| 做生意店子内风水布置| 赌博运气| 24山风水| 砀山县| 网上百家乐官网记牌软件| 大发888娱乐大发体育| 找真人百家乐官网的玩法技巧和规则| 威尼斯人娱乐平台网址| 新全讯网xb112| 百家乐官网马宝| 大发888大发888娱乐城| 2024一2043风水气位| 彰武县| 威尼斯人娱乐平台反水| 百家乐官网园好又多| 百家乐官网太阳城小郭| 威尼斯人娱乐场28gxpjwnsr| 网上百家乐官网公式| 百家乐规律打法| 千亿娱百家乐官网的玩法技巧和规则| 红足一世| 上海二八杠分析仪| 百家乐投注最好方法| 网络百家乐官网金海岸| 真人网上娱乐城| 至尊百家乐20111110| 现金百家乐官网伟易博| 博九百家乐的玩法技巧和规则 | 百家乐游戏开发技术| 百家乐官网的桌子| 绵阳市| 大发888真钱娱乐| 十六浦百家乐的玩法技巧和规则| 赌百家乐官网2号破解| 百家乐官网筹码免运费| 赌博游戏网站| 最好的百家乐游戏平台1|