全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發(fā)布通知公告1條 | 上傳規(guī)范

數(shù)學(xué)與統(tǒng)計(jì)學(xué)院"21世紀(jì)學(xué)科前沿"系列學(xué)術(shù)報(bào)告預(yù)告

Second-order Least Squares Method for High-dimensional Variable Selection

作者: ?? 來源:數(shù)學(xué)學(xué)院?? 發(fā)布日期:2015-06-01
報(bào)告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報(bào)告時(shí)間:2015年6月2日下午3:00-4:00
報(bào)告地點(diǎn):良鄉(xiāng)1-208
報(bào)告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
网络百家乐赌场| 凯旋门百家乐技巧| 足球博彩网站| 百家乐官网已破解的书籍| 百家乐官网走势图解| 百家乐扎金花斗地主| 视频棋牌游戏| 巴比伦百家乐官网的玩法技巧和规则| 玩百家乐官网技巧看| 恒利百家乐的玩法技巧和规则| 百家乐鞋| 同江市| 百家乐赌博论谈| 网上百家乐官网投注技巧| 百家乐如何赚钱洗码| 网上百家乐官网解码器| 百家乐桌子北京| 百家乐官网单注技巧| 百家乐baccarat| 什么百家乐官网平注法| 百家乐官网出千手法| 百家乐赌博信息| 百家乐官网赌缆注码运用| 威尼斯人娱乐城怎么样lm0| 凯旋门百家乐官网技巧| 百家乐棋| 百家乐官网赌博彩| 威尼斯人娱乐场cqsscgw88| 新葡京百家乐官网的玩法技巧和规则 | 伯爵百家乐赌场娱乐网规则| 百家乐官网论坛博彩啦| 516棋牌游戏加速器| 网络百家乐| 沙龙百家乐官网娱乐平台| bet365备用主页| 梁河县| 大发888 信用卡| 百家乐平台出租家乐平台出租| 威尼斯人娱乐城筹码| 南京百家乐官网的玩法技巧和规则| 大发888网页游戏|