全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
188金宝博备用网址| 百家乐官网最新庄闲投注法| 百家乐官网拍是什么| 在线百家乐平台| 百家乐官网注册优惠平台| 威尼斯人娱乐城佣金| 百家乐官网追号软件| 大发百家乐官网游戏| 红桃K百家乐的玩法技巧和规则 | 大发888游戏平台 送1688元礼金领取lrm| 六合彩生肖| 百家乐博彩优惠论坛| 缅甸百家乐官网网络赌博解谜| 波克城市棋牌下载| 玩百家乐有几种公式| 百家乐官网喜牛| e世博官方网站| 百家乐代理打| 金赞百家乐现金网| 网上百家乐官网赌博出| 丰合国际网上娱乐| 吕百家乐赢钱律| 百家乐在线小游戏| 百家乐官网必胜| 二八杠棋牌| 澳门百家乐心| 海立方百家乐海立方| 银河百家乐官网的玩法技巧和规则| 云鼎百家乐代理| 杨筠松古法风水24| 榆次百家乐官网的玩法技巧和规则| 百家乐官网百家乐官网游戏| 新全讯网3344555| 网络百家乐真人游戏| 澳门百家乐代理| 澳门百家乐官网出千吗| 百家乐官网庄的概率| bet365进不去| 网上老虎机游戏| 百家乐好不好| 长沙百家乐的玩法技巧和规则|